
Generating Transferable Adversarial Simulation
Scenarios for Self-Driving via Neural Rendering

Yasasa Abeysirigoonawardena
University of Toronto

yasasa@cs.toronto.edu

Kevin Xie
University of Toronto

kevincxie@cs.toronto.edu

Chuhan Chen
Carnegie Mellon University

chuhanc@andrew.cmu.edu

Salar Hosseini Khorasgani
University of Toronto

salar.hosseinikhorasgani@mail.utoronto.ca

Ruiqi Wang
Stanford University

rqwang@stanford.edu

Florian Shkruti
University of Toronto

florian@cs.toronto.edu

Abstract—Self-driving software pipelines include components
that are learned from a significant number of training examples,
yet it remains challenging to evaluate the overall system’s safety
and generalization performance. Together with scaling up the
real-world deployment of autonomous vehicles, it is of critical
importance to automatically find simulation scenarios where the
driving policies will fail. We propose a method that efficiently
generates adversarial simulation scenarios for autonomous driv-
ing by solving an optimal control problem that aims to maximally
perturb the policy from its nominal trajectory. Given an image-
based driving policy, we show that we can inject new objects in
a neural rendering representation of the deployment scene, and
optimize their texture in order to generate adversarial sensor
inputs to the policy. We demonstrate that adversarial scenarios
discovered purely in the neural renderer (surrogate scene) can
often be successfully transferred to the deployment scene, without
further optimization. We demonstrate this transfer occurs both in
simulated and real environments, provided the learned surrogate
scene is sufficiently close to the deployment scene.

I. INTRODUCTION

Safety certification of a self-driving stack would require
driving hundreds of millions of miles on real roads, according
to [1], to be able to estimate miles per intervention with statis-
tical significance. This could correspond to decades of driving
and data collection. Procedural generation of driving simula-
tion scenarios has emerged as a complementary approach for
designing unseen test environments for autonomous vehicles
in a cost-effective way. Currently, generation of simulation
scenarios requires significant human involvement, for example
to specify the number of cars and pedestrians in the scene,
their initial locations and approximate trajectories [2], as well
as selection of assets to be added to the simulator. In addition
to being challenging to scale, having a human in the loop can
result in missing critical testing configurations.

In this paper, we cast adversarial scenario generation as
a high-dimensional optimal control problem. Given a known
image-based driving policy that we want to attack, as well as
the dynamics of the autonomous vehicle, we aim to optimize
a photorealistic simulation environment such that it produces
sensor observations that are 3D-viewpoint-consistent, but ad-
versarial with respect to the policy, causing it to deviate from

its nominal trajectory. The objective of the optimal control
problem is to maximize this deviation through plausible per-
turbations of objects in the photorealistic environment.

Our optimal control formulation requires differentiation
through the sensor model in order to compute the derivative
of the sensor output with respect to the underlying state
perturbation. However, most existing photorealistic simulators
for autonomous vehicles are not differentiable; they can only
be treated as black boxes that allow forward evaluation,
but not backpropagation. Instead of using an off-the-shelf
photorealistic simulator and adding assets to match the scene,
we train an editable neural rendering model that imitates the
deployment scene, allowing us to insert new objects in the
simulator and to optimize their texture through gradient-based
optimization. This editable neural rendering model acts as
a surrogate physics and rendering simulator, enabling us to
differentiate through it efficiently in order to attack the driving
policy’s input sensor observations.

II. RELATED WORK

Adversarial scenarios for autonomous driving. Perceptual
adversarial attacks make modifications to prerecorded sensor
data from real driving sessions to fool the perception system.
Since this sensor data is fixed, they lack the ability to resim-
ulate and typically only operate on the individual frame level.
Previous works, [3, 4] attempt to attack a LiDAR object detec-
tion module by artificially inserting an adversarial mesh on top
of car rooftops or objects in a prerecorded LiDAR sequence.
They extend the scope of their attack further by incorporating
textures to be able to attack image-based object detectors as
well [5]. In both these works, the inserted object has a very
low resolution and nondescript geometry. Recent self-driving
simulators, such as DriveGAN [6], GeoSim [7] and UniSim [8]
address these issues, with the latter enabling manipulable
sensor-based simulators based on prerecorded datasets. These
works, however, have not dealt with discovering attacks.

Another prominent line of works produce dynamic state-
level adversarial attacks. These generally target the con-
trol/planning system only by perturbing trajectories of other



U
n

p
e
rt

u
rb

e
d

R
a

n
d
o

m

A
tt

a
c
k

A
d

v
e

rs
a

ri
a
l

(d
e

p
lo

y
m

e
n

t)

A
d

v
e

rs
a

ri
a
l 

(N
e

R
F

)

Fig. 1: First-person-view (FPV) of our adversarial attack transfer to an RC car with overhead trajectory view on the right. Row
1: Unperturbed policy execution; Row 2: Random search texture attack; Row 3: Our adversarial attack directly transferred to
the real deployment scene, without additional optimization; Row 4: Our adversarial attack discovered in the surrogate NeRF
simulator.

agents in the scene. Without considering the perception sys-
tem, these methods use simplified traffic and state-based
simulators that do not incorporate 3D rendering [9, 10, 11].

Closest to our work, a few methods have proposed to attack
end-to-end self-driving policies that perform both perception
and control. To this end, adversarial perturbations are made
to existing self-driving simulators, primarily CARLA. In [12],
the trajectories of other agents in a CARLA scene are modified
to generate a collision event. Due to the non-differentiability
of the simulator, a black-box Bayesian optimization is used
to search for successful attacks. Gradient-based attacks on
top of simulators have also been investigated. However, the
requirement of differentiability has so far limited their scope to
very simplified geometries that are composited post-hoc onto
renderings from CARLA. In [13], flatly colored rectangles are
composited on top of frames from the CARLA simulator and
optimized to cause maximal deviation of an end-to-end image-
based neural network steering controller. Similarly, work in
[14] attempts to play a video sequence of adversarial images
on a billboard in the scene using image composition. To
our knowledge, no works in this setting have been able to
demonstrate transfer of adversarial attacks to the real world.

III. METHOD

Our framework generates successful adversarial attacks of
end-to-end image-based self-driving policies with only access
to posed images from the deployment scene. An overview of
the high-level steps in our framework is shown in Figure A.2.

We now briefly describe the setting and our adversarial
attack method. More details are included in Appendix A. Let
xt denote the state of the car at time t, x∗ denote a reference
trajectory to track and CTE the cross-track error.

Our optimization problem is as follows:

min
θ

J(θ) =

T∑
t=0

C(xt) such that G(xt−1, xt, θ) = 0 (1)

Where we set the cost function C(xt) of our problem as
the car’s proximity to the reference x∗:

C(xt) = −CTE(xt, x∗) (2)

In other words, we want to maximize deviation from
the desired trajectory. We set the constraint function
G(xt, xt+1, θ) = 0 to be the following set of constraints:

ut = πϕ(ot) (3)
ot = hγ,θ(xt) (4)

xt+1 = fc(xt, ut) (5)

Where π is the fixed driving policy1, h is the neural rendering
sensor model that outputs image observations ot given the state
of the car. The renderer depends on θ, the parameters of adver-
sarial NeRF objects and γ, the fixed rendering parameters of
the background scene NeRF. Finally, fc denotes the dynamics
of the ego vehicle that must be considered, since we want to
find adversarial trajectories that are consistent across multiple
frames.

A. Differentiable Renderer

Traditional simulators like CARLA do not admit com-
putation of gradients. Thus, prior works rely on artificially
compositing simplistic textured geometries on top of rendered

1We train our own policy and provide details in Appendix F.



Fig. 2: A computation diagram of our algorithm for generating adversarial attacks. The inner driving loop consists of three
components: the neural rendering model, the driving policy, and the car dynamics. We inject the adversarial perturbation to the
surrogate scene by composing the outputs of one or more neural object renderers (the single object case is shown above for
simplicity) with the output of the neural scene renderer. The parameters of the object renderer(s) are optimized to maximize
the deviation of the realized trajectory from the reference trajectory, while keeping the parameters of the driving policy and
scene renderer frozen.

images from CARLA and obtaining gradients with respect
to the composited alteration [14]. We use NeRFs to learn
surrogate models of the scene and sensor model instead. This
surrogate model not only gives us an automated method to
reconstruct scenes from pose-annotated images, but also pro-
vides efficient gradient computation giving us a differentiable
form for the sensor h. For the purposes of optimization, we
found traditional NeRF representations to be intractable in
terms of compute and memory requirements (during gradient
computation). Thus, we opt to use the multi-resolution hash
grid representation, Instant-NGP [15].

Note that, similar to existing work, we detach the gradients
of the image observation with respect to the camera coordi-
nates (which are attached to the ego vehicle) [16]. We include
more details regarding this in Appendix D.

B. Adversarial Object Insertion

We use insertion and texturing of multiple objects as our
adversarial perturbations to the background scene. To do this,
we first reconstruct regular objects, such as cars, as individual
NeRFs from pose-annotated images. For our object NeRFs
we simply store color values directly on the voxel grids of
Instant-NGP, which are tri-linearly interpolated within each
voxel. By choosing these color voxel grids as our adversarial
parameters θ, we can perform independent adversarial texture
attacks over multiple objects. The object NeRFs can be easily
composed with our background scene NeRF. This is done via
alpha compositing, which leverages opacity and depth values
that can be easily computed.

C. Gradient-based Adversarial Attack

Obtaining gradients for the problem in Eqn. (1) should
be possible with an autodifferentiation framework such as
PyTorch [17]. We find that naively computing the gradient
via backpropagation results in memory issues as we scale up
trajectory lengths due to all the intermediary compute variables
used to compute the integral in Eqn. A.1 being stored until
the end of the trajectory. We achieve drastic memory savings
by using the adjoint method [18] which only keeps track of
the adjoint variables λ along the trajectory. In our case, the
adjoint variables are three-dimensional, allowing us to only
use as much memory as it takes to compute a single jacobian
vector product of the composition of models given by (5), (3),
(4).

To summarize, the computation of our gradient-based ad-
versarial attack proceeds as follows: noitemsep,topsep=-1pt

1) We rollout our policy in our surrogate simulator to
compute the loss and the trajectory x1:T .

2) We perform a backward pass to compute adjoint vari-
ables for gradient computation.

3) Using the adjoint variables, we compute the gradient
∇θJ and update parameters θ.

IV. EXPERIMENTS

To demonstrate the effectiveness of our framework, we aim
to reconstruct a driving scenario from posed images, generate
adversarial attacks and validate that those attacks transfer to
the deployment scene. Through our experiments, we would
like to answer the following key questions:



CARLA Deployment Surrogate Scene CARLA Deployment

Scenario Unperturbed Random Gradient Random Gradient

Straight 1166 1132± 7 2347± 49 1193± 19 1702.± 160
Right 1315 2084± 10 4105± 847 1476± 12 2101.± 75
Left 1448 1460± 8 4125± 124 1158± 163 2240.± 574

Physical Deployment Surrogate Scene Physical Deployment

Setup Unperturbed Random Gradient Random Gradient

Green Screen
48 34± 4 157± 1

46± 3 248± 72
Monitor 47± 3 76± 48

TABLE I: Comparison of the total cross-track error for all the scenario tested. Results are shown for the following cases: (1)
no attack in the deployment scene (unperturbed), (2) an adversarial attack (random or gradient) in the surrogate NeRF scene,
(3) an attack in the deployment scene. We separate results from the CARLA and physical deployments, we show that gradients
in our surrogate simulator are useful for finding adversarial attacks and these attacks remain effective when transferred to the
deployment environment.

(Q1) Can gradient based optimization find better adversarial
examples than random search?

(Q2) Are NeRF models suitable surrogate renderers for gradi-
ent based adversarial optimization?

(Q3) Are adversarial attacks transferable from NeRF back to
the deployment domain?

A. Evaluation Metrics

We evaluate our method on two distinct deployment envi-
ronments, CARLA simulator and a real world RC car. In the
CARLA simulator our objects were alpha composited on top
of the base CARLA rendering. In the real world deployment
scene, we test overlaying a texture on the camera input feed as
well as placing a monitor containing the texture. More details
of these setups are given in D1

We measure the effectiveness of an attack with our adver-
sarial objective, the cross track error of the vehicle. We use the
road center as the reference and so even an unperturbed driving
policy has some non-zero deviation which we report under
“Unperturbed” in Table I. To characterize the insensitivity of
our method to random seeds, we run 5 separate attacks per
scenario for both the gradient-based and random attacks with
different random initializations of the adversarial parameters.
We report the mean and standard deviation of our metric. Our
proposed method of attack is via gradient-based optimization
using the method outlined in Section III-C. The gradient-
based attack uses 50 iterations of optimization using Adam,
with a learning rate of 0.1. Due to the high dimensional
parameterization, detailed in D1, bayesian optimization be-
comes computationally intractable. Therefore, as a baseline
for our method, we perform a random search parameter attack
on the NeRF surrogate model that samples parameters from a
Gaussian distribution with mean zero and a standard deviation
of 5. We chose this standard deviation to match the distribution
over parameters we found in our gradient attacks. We use
the same number of function evaluations, selecting the best
achieved attack among the 50 random samples for the CARLA
experiment. For real-world experiments, we didn’t find much
variation between random attacks in the surrogate simulator,
showing the difficulty of random search in high dimensional

parameter spaces.

B. Experimental Results

Example gradient attack trajectories are shown in Figure A.1
We include more visualization of results for deployments of
adversarial attacks, both in CARLA simulation in the real
world, in Appendix H3. In Table I we compare the total
cross track errors caused by our adversarial attack against the
expert lane following controller. We observe in all 3 CARLA
scenarios (averaged over 5 seeds each) that our adversarial
attacks using gradient optimization consistently produce sig-
nificant deviation from the lane center. When transferring these
attacks back into the deployment scene, we see that although
the magnitude of the deviation is reduced, we still retain a
significant increase over the unperturbed or random search
setting. The difference is likely due to visual imperfections
in our surrogate NeRF simulator compared to the deployment
scene. The random search perturbations are far less effective,
remaining near the baseline unperturbed trajectory for 2 out
of the 3 cases.

For the real world experiment, we observed a similar result.
Random attacks consistently fail to elicit deviation from the
driving policy both in the surrogate and deployment scenes.
Over 5 random seeds, not a single random attack was able
to cause the vehicle to exit the track. Gradient attacks on the
other hand are reliably able to find strong attacks with little
variance in the surrogate scene. When transferring our attacks
to the real world, we find the attacks to retain their strength in
the green screen setup. The strength of the attack is relatively
diminished when using the monitor to project the attack but
is nonetheless consistently higher than the random attack and
causes the vehicle to understeer and exit the track on occasion.
We suspect this is due to the display properties of the monitor
which can alter the appearance of the adversarial perturbation.

V. CONCLUSION

We presented a method for generating 3D-consistent object-
based adversarial perturbations in autonomous driving scenar-
ios. Unlike previous approaches that rely on making edits
on top of fixed pre-recorded data or black-box simulators,



we develop a differentiable simulator directly with a neural
radiance field representation of geometry and texture of a
scene that admits gradients through the rendering of camera
and depth observations. Through alpha-compositing, we can
introduce new objects also represented as neural radiance fields
into the scene and optimize color perturbations of the objects.
While our particular implementation is only a first step towards
demonstrating NERF based adversarial attack generation, we
believe that our framework represents a promising new di-
rection for automatic evaluation of autonomous vehicles. We
expect our method to benefit greatly from continued improve-
ments being made to neural rendering and their wider adoption
for AV/robotic simulation.

REFERENCES

[1] Kalra Nidhi and Susan M. Paddock. Driving to Safety:
How Many Miles of Driving Would It Take to Demon-
strate Autonomous Vehicle Reliability? https://www.
rand.org/pubs/research reports/RR1478.html, 2016. [On-
line; accessed 19-July-2018].

[2] Alexis C Madrigal. Inside waymo’s secret world for
training self-driving cars. The Atlantic, Aug 2017. URL
https://www.theatlantic.com/technology/archive/2017/08/
inside-waymos-secret-testing-and-simulation-facilities/
537648/.

[3] James Tu, Mengye Ren, Siva Manivasagam, Ming Liang,
Bin Yang, Richard Du, Frank Cheng, and Raquel Ur-
tasun. Physically Realizable Adversarial Examples for
LiDAR Object Detection, April 2020. URL https://arxiv.
org/abs/2004.00543.

[4] Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang,
Ruigang Yang, Mingyan Liu, and Bo Li. Adversarial
objects against lidar-based autonomous driving systems.
CoRR, abs/1907.05418, 2019. URL http://arxiv.org/abs/
1907.05418.

[5] James Tu, Huichen Li, Xinchen Yan, Mengye Ren,
Yun Chen, Ming Liang, Eilyan Bitar, Ersin Yumer, and
Raquel Urtasun. Exploring adversarial robustness of
multi-sensor perception systems in self driving, January
2022. URL https://arxiv.org/abs/2101.06784.

[6] Seung Wook Kim, Jonah Philion, Antonio Torralba,
and Sanja Fidler. Drivegan: Towards a controllable
high-quality neural simulation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5820–5829, June 2021.

[7] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong
Wang, Xinchen Yan, Sivabalan Manivasagam, Shangjie
Xue, Ersin Yumer, and Raquel Urtasun. Geosim: Realis-
tic video simulation via geometry-aware composition for
self-driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 7230–7240, June 2021.

[8] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel
Urtasun. Unisim: A neural closed-loop sensor simula-
tor. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages
1389–1399, June 2023.

[9] Jingkang Wang, Ava Pun, James Tu, Sivabalan Mani-
vasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and
Raquel Urtasun. AdvSim: Generating Safety-Critical
Scenarios for Self-Driving Vehicles, January 2022. URL
https://arxiv.org/abs/2101.06549.

[10] Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja
Fidler, and Or Litany. Generating useful accident-prone
driving scenarios via a learned traffic prior. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17305–17315, 2022.

[11] Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mou-
gin, Punit Shah, Kyriacos Shiarlis, Dragomir Anguelov,
Mark Palatucci, Brandyn White, and Shimon Whiteson.
Symphony: Learning realistic and diverse agents for
autonomous driving simulation, 2022. URL https://arxiv.
org/abs/2205.03195.

[12] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gre-
gory Dudek. Generating adversarial driving scenarios in
high-fidelity simulators. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 8271–
8277. IEEE, 2019.

[13] Jinghan Yang, Adith Boloor, Ayan Chakrabarti, Xuan
Zhang, and Yevgeniy Vorobeychik. Finding Physical
Adversarial Examples for Autonomous Driving with Fast
and Differentiable Image Compositing, June 2021. URL
https://arxiv.org/abs/2010.08844.

[14] Naman Patel, Prashanth Krishnamurthy, Siddharth Garg,
and Farshad Khorrami. Overriding Autonomous Driving
Systems Using Adaptive Adversarial Billboards. IEEE
Transactions on Intelligent Transportation Systems, 23
(8):11386–11396, August 2022.

[15] Thomas Müller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on
Graphics, 41(4):1–15, July 2022.

[16] Niklas Hanselmann, Katrin Renz, Kashyap Chitta, Apra-
tim Bhattacharyya, and Andreas Geiger. King: Generat-
ing safety-critical driving scenarios for robust imitation
via kinematics gradients, 2022. URL https://arxiv.org/
abs/2204.13683.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019.

[18] Krishna Murthy Jatavallabhula, Miles Macklin, Florian
Golemo, Vikram Voleti, Linda Petrini, Martin Weiss,

https://www.rand.org/pubs/research_reports/RR1478.html
https://www.rand.org/pubs/research_reports/RR1478.html
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://arxiv.org/abs/2004.00543
https://arxiv.org/abs/2004.00543
http://arxiv.org/abs/1907.05418
http://arxiv.org/abs/1907.05418
https://arxiv.org/abs/2101.06784
https://arxiv.org/abs/2101.06549
https://arxiv.org/abs/2205.03195
https://arxiv.org/abs/2205.03195
https://arxiv.org/abs/2010.08844
https://arxiv.org/abs/2204.13683
https://arxiv.org/abs/2204.13683


Breandan Considine, Jerome Parent-Levesque, Kevin
Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek
Nowrouzezahrai, and Sanja Fidler. gradsim: Differen-
tiable simulation for system identification and visuo-
motor control. International Conference on Learning
Representations (ICLR), 2021. URL https://openreview.
net/forum?id=c E8kFWfhp0.

[19] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lom-
bardi, Z. Xu, T. Simon, M. Nießner, E. Tretschk,
L. Liu, B. Mildenhall, P. Srinivasan, R. Pandey, S. Orts-
Escolano, S. Fanello, M. Guo, G. Wetzstein, J.-Y.
Zhu, C. Theobalt, M. Agrawala, D. B Goldman, and
M. Zollhöfer. Advances in neural rendering. In ACM
SIGGRAPH 2021 Courses, SIGGRAPH ’21, 2021.

[20] Adam R. Kosiorek, Heiko Strathmann, Daniel Zoran, Pol
Moreno, Rosalia Schneider, Soňa Mokrá, and Danilo J.
Rezende. Nerf-vae: A geometry aware 3d scene genera-
tive model, 2021. URL https://arxiv.org/abs/2104.00587.

[21] Michael Niemeyer and Andreas Geiger. Giraffe: Repre-
senting scenes as compositional generative neural feature
fields. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021.

[22] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li,
Han Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng
Cui. Learning object-compositional neural radiance field
for editable scene rendering. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 13779–13788, 2021.

[23] Sagie Benaim, Frederik Warburg, Peter Ebert Chris-
tensen, and Serge Belongie. Volumetric disentanglement
for 3d scene manipulation, 2022. URL https://arxiv.org/
abs/2206.02776.

[24] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Kon-
stantinos G. Derpanis, Jonathan Kelly, Marcus A.
Brubaker, Igor Gilitschenski, and Alex Levinshtein. Spin-
nerf: Multiview segmentation and perceptual inpainting
with neural radiance fields, 2022. URL https://arxiv.org/
abs/2211.12254.

[25] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T Barron.
Nerv: Neural reflectance and visibility fields for relight-
ing and view synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7495–7504, 2021.

[26] Weicai Ye, Shuo Chen, Chong Bao, Hujun Bao, Marc
Pollefeys, Zhaopeng Cui, and Guofeng Zhang. Intrinsic-
nerf: Learning intrinsic neural radiance fields for editable
novel view synthesis, 2022. URL https://arxiv.org/abs/
2210.00647.

[27] Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Sko-
rokhodov Ivan, Siarohin Aliaksandr, Ceyuan Yang, Yujun
Shen, Hsin-Ying Lee, Bolei Zhou, and Tulyakov Sergy.
Discoscene: Spatially disentangled generative radiance
field for controllable 3d-aware scene synthesis, 2022.
URL https://arxiv.org/abs/2212.11984.

[28] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza

Fathi, Caroline Pantofaru, Leonidas J Guibas, Andrea
Tagliasacchi, Frank Dellaert, and Thomas Funkhouser.
Panoptic neural fields: A semantic object-aware neural
scene representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12871–12881, 2022.

[29] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qin-
hong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5501–5510, 2022.

[30] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua,
and Christian Theobalt. Neural sparse voxel fields.
Advances in Neural Information Processing Systems, 33:
15651–15663, 2020.

[31] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. European
Conference on Computer Vision (ECCV), 2022.

[32] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca
Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.
Objaverse: A universe of annotated 3d objects, 2022.
URL https://arxiv.org/abs/2212.08051.

[33] Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018. URL http://
www.blender.org.

[34] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving
cars, 2016. URL https://arxiv.org/abs/1604.07316.

[35] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, 2011.

[36] Felipe Codevilla, Matthias Müller, Alexey Dosovitskiy,
Antonio M. López, and Vladlen Koltun. End-to-
end driving via conditional imitation learning. CoRR,
abs/1710.02410, 2017. URL http://arxiv.org/abs/1710.
02410.

[37] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[38] Johannes Lutz Schönberger, Enliang Zheng, Marc Polle-
feys, and Jan-Michael Frahm. Pixelwise view selection
for unstructured multi-view stereo. In European Confer-
ence on Computer Vision (ECCV), 2016.

https://openreview.net/forum?id=c_E8kFWfhp0
https://openreview.net/forum?id=c_E8kFWfhp0
https://arxiv.org/abs/2104.00587
https://arxiv.org/abs/2206.02776
https://arxiv.org/abs/2206.02776
https://arxiv.org/abs/2211.12254
https://arxiv.org/abs/2211.12254
https://arxiv.org/abs/2210.00647
https://arxiv.org/abs/2210.00647
https://arxiv.org/abs/2212.11984
https://arxiv.org/abs/2212.08051
http://www.blender.org
http://www.blender.org
https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1710.02410


APPENDIX

A. NeRF

Neural 3D representations, such as neural radiance fields
(NeRF), have seen significant activity in recent years due to
their ability to reconstruct real world objects and scenes to
very high detail using only posed images. A survey of recent
progress in neural rendering can be found in [19].

Differentiable rendering. NeRFs represent scenes as emis-
sive volumetric media [15]. Unlike surface rendering, volumet-
ric rendering does not suffer from explicit hard discontinuities,
which are difficult to handle for traditional surface rendering
methods[19]. We exploit the differentiable volume rendering
of NeRFs, to robustly compute efficient gradients for arbitrary
geometries.

Volume Rendering A neural radiance field consists of
two fields, σϕ(x), Lψ(x, ω) that encode the density σ at
every location x and the outgoing radiance L at that location
in the direction ω. In NeRFs, both of these functions are
represented by parameterized differentiable functions, such
as neural networks. Given a radiance field, we are able to
march rays through an image plane and reconstruct a camera
image from a given camera pose and intrinsic matrix using
the rendering function:

I(x, ω) =

∫ T

0

σ(t) exp

(∫ t

0

σ(t̂)dt̂

)
L(t,−ω)dt (A.1)

Where L(t, ·) and σ(t) are shorthands for L(tω + x, ·) and
σ(tω + x), and I(x, ω) is the intensity at a location x given
in world space in the direction ω.

Composition and editing. Recent works have extended the
static single scene setting of NeRF to composition of NeRFs,
scene disentanglement, as well as editing and relighting.
Specifically, [20] encodes scenes with latent codes from which
new scenes can be generated. [21], [22] and [23] introduce
compositional radiance fields to represent different objects and
realize scene decomposition. [24] utilizes 2D segmentation
information to perform 3D scene inpainting. [25] and [26]
decompose color into different illumination components. [27]
[28] learn priors from big datasets of images to disentangle
existing scenes.

For our adversarial attacks to contain 3D semantics, it is
crucial to insert the perturbation in a 3D aware manner. For
this we utilize another feature of neural radiance fields, which
is to output opacity values. Specifically, in Eqn. (A.1) we can
extract the transmittance component, which acts as a measure
of the pixel transparency α:

α(x, ω) = exp

(∫ t

0

σ(t̂)dt̂

)
(A.2)

Furthermore, we can replace the radiance term with distance
in (A.1) to extract the expected termination depth of a ray z:

z(x, ω) =

∫ T

0

tσ(t)α(t)dt (A.3)

We consider the case of two radiance fields, the object radiance
field σo, Lo and the background radiance field σs, Ls. We use

a transformation matrix to correspond ray coordinates between
the scene and the object radiance field.

By applying equations (A.1), (A.2), (A.3) to a single ray
that corresponds to both the base scene and the object radiance
field, we obtain the values co, αo, zo, cs, αs, zs respectively,
where α∗ is the opacity and z∗ is the depth along the ray. We
denote the foreground and background values at a pixel as

f = argmin
o,s

(zs, zo) (A.4)

b = argmax
o,s

(zs, zo) (A.5)

The final blended color is then given by:

c =
αfcf + (1− αf )αbcb
αf + αb(1− αf )

(A.6)

In the case of multiple object NeRFs, we simply repeat the
alpha blending for each object to composite them all into the
same scene.

Accelerated rendering. The original NeRF method has
high computational cost of training and rendering. Structured
grid NeRFs reduce computation cost by storing direct density
and color variables [29] or latent features[30, 31] on explicit
3D grids. Instant Neural Graphics Primitives (iNGP) uses
multi-scale dense grids and sparse hash grids of features that
are decoded to color and density by a MLP [15]. We use iNGP
like models to represent the scene and objects in our work.

B. Vehicle Dynamics

The dynamics in equation (5) can take multiple forms, for
the CARLA experiments, we choose the simplest kinematic
model of a car, a Dubin’s vehicle:

ẋ =

v cos θv sin θ
u

 (A.7)

For the purposes of the CARLA deployment environment, we
find that it is sufficient to consider the kinematic model with
fixed velocity, and only angular control. Thus, our imitation
learning policy in Eqn. (3) only outputs steering commands.
We note that our approach is applicable to any dynamics
model, as long as it is differentiable.

For the real world experiments, we opted for a fixed velocity
Ackerman steering model:

ẋ =

 v cos θ
v sin θ
v
l tan(θ)

 (A.8)

where l is the robot wheelbase.

C. Implicit Differentiation

To carry out the adjoint method for obtaining gradients of
the trajectory optimization problem stated in Equation (1), we
need to perform two passes over the trajectory.



Explicitly, the method performs a forward simulation to com-
pute the variables xt and then subsequently a backward pass
to compute adjoint variables λt by solving the equations:

∂G(xt−1, xt)

∂xt

⊤
λt = −∂C(xt)

∂xt

⊤
− ∂G(xt, xt+1)

∂xt

⊤
λt+1

(A.9)
with the boundary condition:

∂G(xT−1, xT )

∂xT

⊤
λT = −∂C(xT )

∂xT

⊤
(A.10)

Finally, the gradient of the loss can be calculated as:

∇θJ = λ⊤
1

∂G(x0, x1, θ)

∂x0

∂x0

∂θ
+

T∑
t=1

λ⊤
t

∂G(xt−1, xt, θ)

∂θ

(A.11)
Throughout both passes we do not need to store large inter-
mediate variables and only need to accumulate the gradient at
each step.

D. Optimization Details

As described in Section III-A, following prior work, we
do not propagate gradients of camera parameters through the
sensor model function. Specifically, we set,

ot = hγ,θ(stop gradient(xt)) (A.12)

Thus gradients of the observation will only be taken with
respect to the adversarial object parameters θ and not the state
of the car. The gradient with respect to xt corresponds to
exploiting higher order effects of how the observation would
change if the car was looking in a slightly different direction
due to previous steps of the attacks, and leads to a very non-
smooth loss objective that is not useful for finding practical
attacks.

For experiments in the real world, we found the attacks were
sometimes very sensitive to the robot’s pose. To alleviate this
issue, we chose to optimize multiple randomly sampled initial
poses simultaneously. The samples were normally distributed
around the nominal car starting location, with a standard
deviation of 0.1.

1) Optimization parameters: In all our experiments, our
optimization parameters θ correspond to values on the NGP
voxel grid. Since we have removed the decoder, the grid values
directly correspond to the color for a given position in the
volume. Due to this, the parametrization even for small models
can get quite large, in the order of a 5 million for the hydrant.

E. NeRF Models

When training the surrogate NeRF models of the back-
ground scene and objects, we use the default Instant-NGP
hyperparameters and optimize over 50 epochs using the Adam
optimizer.

The source 3D assets for our objects were obtained from
the Objaverse dataset [32] and posed images produced by
rendering with Blender[33]. For our object models, we choose
to use Instant-NGP without a decoder, instead directly en-
coding the colour values in the feature grid. Furthermore,

Fig. A.1: Base car on the left; random texture in the middle;
adversarial texture on the right.

we remove view dependence for better multi-view consis-
tency. Finally, we use lower resolutions for the object feature
grids as compared to the scene feature grids. The object
feature grids contain resolutions up to 1283 and 643 fea-
tures for the car and hydrant, respectively. Since our ad-
versarial objective does not have any smoothness constraint,
we found it critical to use lower resolution grids and remove
the positionally encoded feature decoders to avoid aliasing
effects.

F. Driving Policy.

We train our own policy on which the attack will be
performed. Our policy is an end-to-end RGB image neural
network policy and the architecture is taken from [34]. We
make a slight addition to goal condition the policy by adding a
goal input to the linear component and increasing the capacity
of the linear layers. The policy is trained via imitation learning,
specifically DAgger [35], [36].

Expert actions are given by a lane following controller
tuned for the simulator that gets access to the ground truth
state, unlike the policy. The expert queried from various states
random distances from the center of the road to recover
from. Furthermore, random noise augmentation is used on the
images during training to make the policy more robust to noisy
observations.

G. CARLA

We fit the background scene model using a dataset of 1800
images and their corresponding camera poses, which provide
a dense covering of the CARLA scene.

When transferring our attacks back to the deployment scene,
opacity values are usually not available. In order to evaluate
our attacks, we assume that objects are opaque (α = 1),
and thus our method of blending in Equation A.3 can be
calculated using just the depth and color values. We observe
from experiments on the CARLA simulator that this type of
composition is sufficient for the evaluation in the deployment
environment.

Driving Policy For our driving policy the initial training
dataset of images is collected from the intersection in CARLA.
We further fine-tuned the policy with some additional data
collected from our surrogate simulator to ensure that our
policy is not trivially failing due to slight visual differences.
We use a total dataset of 120000 images in CARLA and
60000 images in the surrogate simulator in order to train
the policy. We validated our policy on a hold out validation
set consisting of 12000 images captured purely from the



Pose-Annotated Images of Deployment Scene

Synthetic Scene in Neural Renderer Discovered Adversarial Attack 

Attacks Transferred to Deployment Scene Overhead View

Overhead View

D
ep

lo
ym

en
t S

ce
ne

 
C

A
R

LA
D

iff
er

en
tia

bl
e 

si
m

ul
at

or
 

N
eu

ra
l R

en
de

re
r

Transfer Attack 

Gradient- 
based 

adversarial 
attack 

Learn iNGP

Fig. A.2: Our method can be summarized in the four steps shown. (a) In the top left, we obtain posed images from the
deployment scene which can be a simulator or the real world. (b) In the bottom left, we reconstruct a surrogate scene by fitting
a NeRF to the posed images as a differentiable simulator and observe only minor perceptual gap. (c) Having the surrogate
scene, we can insert objects, which are also represented as NeRFs, and attack their color fields to generate textural attacks.
(d) The discovered adversarial objects are introduced back into the deployment scene.

surrogate simulator. All data were collected by running the
expert on the 3 reference trajectories. The policy was trained
using behaviour cloning, where we gave examples of recovery
from deviation by collecting data from random start locations
around the nominal trajectory.

H. Real World

We fit the background to a room in the real world using
a dataset of 2161 images captured from an iPhone camera at
4K resolution. We collect data covering the room by walking
around, then attach the iPhone to the robot to collect further
data from the driving view points. The captured videos are
processed using COLMAP [37, 38] for both camera intrinsic
and the poses.

Driving Policy. We train a driving policy to track a square
track in the room marked by green tape, this policy was trained
using an expert PID controller with global positioning supplied
by the VICON system providing 9584 images. We further
augment this again with 12000 images from driving data in
the NeRF scene. An overview of our working area is given in
Figure A.3.

For all real world attacks we optimize the color of a cube in
the surrogate NeRF scene, placed at one of the corners such
that the camera will encounter this cube as the car takes the
turn.

1) Robot: We carry out experiments using the RACE-
CAR/J2 platform. The robot is equipped with a ZED stereo
camera, of which we only utilize the RGB data from the left
sensor, which has been configured to a resolution of 366x188
at 10 frames per second. We operate the robot inside a VICON
system that positions the robot at a rate of 50Hz streaming

2https://racecarj.com/

Fig. A.3: Picture of driving area for the real world scenario
experiments.

through a remotely connected computer that runs policy as
well as the image processing for some of the attacks.

2) Green Screen Attack: For the green screen attack, we
utilized a VICON system to accurately position both our robot
and the green screen target. Using the green screen target
position, as well as the camera parameters, we project one
face of the cube on the input image to the policy. We opt
to overlay the cube in such a manner to keep the policy
driving in real time and to ensure that there is no penalty
on control frequency. The image compositions is done at the
remote computer where the controls are computed, which are
then sent wirelessly to the robot to execute.



Fig. A.1: Selected overhead views and snapshots from ad-
versarial deployment trajectories in the real world (top row:
monitor displays adversarial texture discovered in NeRF), and
in CARLA (bottom row: adversarial objects inserted in the
simulator).

Fig. A.2: The performance of the driving policy before (left)
and after (right) retraining on the discovered adversarial sce-
narios.

3) Monitor Attack: To replace the green screen with a
physical object, we place a monitor and display the same
attack as above on the monitor. We place the monitor in a
location such that it is visually consistent with the NeRF and
green screen attacks. For the monitor attack, we utilize a 27-
inch monitor with a 16:9 aspect ratio. Since the adversarial
objects optimized in earlier examples are cubes we only use
the center of the monitor to display the attack.

I. Incorporating Discovered Adversarial Scenarios in the
Training Set

Our primary focus in this paper was to discover adversarial
attacks for the evaluation of pretrained self-driving policy.

Fig. A.3: Sample renderings of the left turn trajectory with the
adversarial perturbations in CARLA from the ego vehicle’s
point of view. Four different snapshots from the evolution of
the trajectory are shown.

Here we perform some preliminary investigations on fine-
tuning our self-driving policies, on the old data and the
adversarial attacks we found. Specifically, we take the attacks
discovered by the gradient-based optimization and use them
to collect additional imitation learning data. The collection
is performed in the CARLA simulator using the depth com-
positing approach to insert the adversarial objects, as was
done for the evaluation in the main paper. Apart from the
object compositing, the data is collected in the same way as
the original CARLA data used to train the base policy. We
collect 24000 total frames over three trajectories with two
different starting points. After fine-tuning our policy on the
combination of the original dataset and the new adversarially
augmented dataset, we evaluate the fine-tuned agent in the
same scenario. We visualize the trajectories of the fine-tuned
policy in Figure A.2 and report on the total deviation compared
to before fine-tuning in Table II. We find that the policy is
no longer susceptible to the adversarial attacks, even though
the initial starting position for evaluation was unseen during
training.

J. CARLA Visualizations

We show first person visualizations of our discoverered
adversarial attacks inserted back into the CARLA deployment
simulator in Figure A.3. We note the smoothness of the texture
discovered by our method. Purely perceptual single-frame
attacks typically exhibit a much higher frequency texture.

We show additional overhead trajectory views of adver-
sarially attacked trajectories from one CARLA scene in Fig-
ure A.4.



CARLA Attack Transfer in CARLA CARLA Attack After Retraining

Scenario Unperturbed Random Gradient Gradient

Straight 1166 1193± 19 1702.± 160 1250
Right 1315 1476± 12 2101.± 75 1307
Left 1448 1158± 163 2240.± 574 1419

TABLE II: Comparison of the total cross-track error for the retraining experiment over the 3 different trajectories. Results are
extending the results from the main paper TableI shown for the following cases: (1) no attack in CARLA (unperturbed), (2)
an attack in the CARLA scene, (3) an attack in the CARLA scene after the driving policy is retrained using adversarial data.

(a) Unperturbed (b) Attacks in NERF (c) Transferred

Fig. A.4: Overhead views of three distinct trajectories driven
by the policy. (a) shows the policy driving behavior in CARLA
when no adversarial perturbation is introduced. (b) shows
the policy driving behavior in the surrogate simulator with
the discovered adversarial perturbation. (c) shows the same
perturbation transferred to the deployment scene.


	Introduction
	Related Work
	Method
	Differentiable Renderer
	Adversarial Object Insertion
	Gradient-based Adversarial Attack

	Experiments
	Evaluation Metrics
	Experimental Results

	Conclusion
	Appendix
	NeRF
	Vehicle Dynamics
	Implicit Differentiation 
	Optimization Details
	Optimization parameters

	NeRF Models
	Driving Policy.
	CARLA
	Real World
	Robot
	Green Screen Attack
	Monitor Attack

	Incorporating Discovered Adversarial Scenarios in the Training Set
	CARLA Visualizations


