
Generating Adversarial Driving Scenarios in High-Fidelity Simulators

Yasasa Abeysirigoonawardena1, Florian Shkurti2, and Gregory Dudek1

Abstract— In recent years self-driving vehicles have become
more commonplace on public roads, with the promise of
bringing safety and efficiency to modern transportation systems.
Increasing the reliability of these vehicles on the road requires
an extensive suite of software tests, ideally performed on high-
fidelity simulators, where multiple vehicles and pedestrians
interact with the self-driving vehicle. It is therefore of critical
importance to ensure that self-driving software is assessed
against a wide range of challenging simulated driving scenarios.
The state of the art in driving scenario generation, as adopted
by some of the front-runners of the self-driving car industry,
still relies on human input [1]. In this paper we propose to
automate the process using Bayesian Optimization to generate
adversarial self-driving scenarios that expose poorly-engineered
or poorly-trained self-driving policies, and increase the risk of
collision with simulated pedestrians and vehicles. We show that
by incorporating the generated scenarios into the training set
of the self-driving policy, and by fine-tuning the policy using
vision-based imitation learning we obtain safer self-driving
behavior.

I. INTRODUCTION

How can we evaluate the performance of self-driving
cars in terms of safety in the face of rare events? One
approach is to measure miles per intervention from real
driving data on the road. According to recent estimates [2],
the number of miles that would have to be driven on the road
in order to demonstrate the safety of a car in a statistically
significant sense is in the range of hundreds of millions of
miles, which corresponds to decades of driving, assuming
current projections about the sizes of fleets of self-driving
vehicles. Another, complementary, approach is to design
rich simulation scenarios that will provide a preliminary
assessment of the self-driving software stack. The question
then becomes: what is the best way to design these driving
scenarios in order to minimize the chances of accidents on
public roads?

Current best practices for stress-testing self-driving navi-
gation software involve a semi-autonomous process, in which
a human operator specifies the number of cars and pedestri-
ans in the scene, their initial locations and their approximate
trajectories, while their speeds are automatically selected
from a wide range of options [1]. Human involvement
and specification renders this process time-consuming and
difficult to scale to new environments. Most importantly,

*This work was supported by the Natural Sciences and Engineering
Research Council (NSERC)

1Affiliated with the Mobile Robotics Lab at the Center for Intelligent
Machines (CIM), McGill University, Montreal, Canada, {yasasaa,
dudek} @ cim.mcgill.ca

2Affiliated with the Department of Computer Science, University of
Toronto, Canada, florian@cs.toronto.edu

Fig. 1. Top row: generated adversarial scenario in which the self-driving
policy cannot avoid the crash. Bottom row: policy avoids the crash by
driving on the empty sidewalk after its training set has been augmented with
expert reactions to adversarial scenarios. Videos available at http://www.
cim.mcgill.ca/˜mrl/adversarial_driving_scenarios

however, it could result in missing critical testing config-
urations.

In this paper we show how to automate the generation of
driving scenarios in high-fidelity simulators, by optimizing
the behaviors of pedestrians and other vehicles on the road
(Non-Player Characters, or NPCs for short), so that they
navigate adversarially with respect to the self-driving vehicle
that is being tested. Our proposed system automatically
explores and finds parameters of NPC trajectories, in a way
that reduces human involvement, and results in possible
crashes and dangerous configurations.

We formulate the problem of searching for adversarial
NPC behaviors in terms of Bayesian Optimization (BO),
and we trade off exploration vs. exploitation, searching
for the global minimum of a black box function. In our
work this black-box function is the unknown cumulative
performance (cost-to-go function) of a self-driving policy,
given the trajectories of the NPC adversaries in a high-
fidelity photorealistic simulator [3]. By keeping track of
the uncertainty of the cost-to-go function using a Gaussian
Process we perform informed exploration using the crite-
rion of expected improvement. We also create an efficient
hierarchical parametrization for the behavior of vehicles and
pedestrians, and we optimize it to determine challenging
scenarios for the self-driving policy.

The novelty of our proposed testing approach lies in the
fact that we generate scenarios based on measurements of the
self-driving performance of the given policy, whereas tradi-
tional testing based on human specification and predefined
test cases does not do that.

We also show that when the generated adversarial sce-
narios are included in the training set they improve the
self-driving policy, as long as expert demonstrations for
how to avoid the accident are obtained. We obtain expert
demonstrations from a path planning and control system,

http://www.cim.mcgill.ca/~mrl/adversarial_driving_scenarios
http://www.cim.mcgill.ca/~mrl/adversarial_driving_scenarios

similar to [4], however, that is not a strict requirement and
human input is also easy to integrate.

Our experiments demonstrate that as a result of fine-tuning
the policy using visual imitation learning according to DAg-
ger [5], the driving behavior becomes safer and accidents are
reduced. We compare our method against baselines such as
random parameter search and the Cross-Entropy Method and
we show that Bayesian Optimization finds better adversarial
scenarios faster compared to either of them.

II. RELATED WORK

A. Bayesian Optimization

Bayesian optimization (BO) [6], [7], [8] is an approach
for finding global optima of a noisy black box function. The
function in question is assumed to be costly to evaluate, so
we would like to use as few evaluations as possible. In our
case, photorealistic driving simulators, such as CARLA [3],
which are based on game engines like the Unreal Engine
4, are currently not able to render faster than real time.
This places a limit on the number of experiments that can
be performed and the amount of experience than can be
collected in a given time interval. We therefore need to
judiciously select the most informative points at which to
obtain noisy measurements from this simulation.

Bayesian Optimization has been used in many robotics
applications, ranging from active sampling [9] to control and
reinforcement learning [10]. BO is determined by two design
choices: the prior over functions and the acquisition function,
which formalizes the utility of querying the value of the
unknown function at a given point. Finding the optimal value
of the acquisition function is typically a much easier problem
than finding the global optima of the unknown function.
Examples of acquisition functions include the probability
of improvement, expected improvement, upper confidence
bound, and Thompson sampling [11]. Acquisition functions
typically model the tradeoff between exploration (querying
points in high uncertainty regions) and exploitation (querying
points near the optima found so far). As such, there are many
links between BO and the multi-armed bandit literature [12].

B. Reinforcement Learning and Informed Exploration

Our approach is also related to model-free reinforcement
learning methods, particularly those involving exploration
strategies that take into account the uncertainty in the value
function induced by the behavior policy. Such approaches
perform exploration by Thompson sampling [13], which is
often more effective than the ε-greedy strategy.

Methods in this category have modeled the uncertainty in
the value function using the bootstrap method [14], Bayesian
linear regression [15], and variational inference [16]. Other
methods, such as [17] have added noise in the policy
parameters and have shown that it improves exploration.
Finally, another approach has been inspired by the control-as-
inference view [18], [19] and adds an explicit policy entropy
term to the objective function to encourage exploration [20].

Although these approaches are very promising and scal-
able to high-dimensional states, they are typically not data-
efficient, requiring in the order of millions of evaluations. As
mentioned previously, photorealistic simulators such as the
Unreal Engine 4 are currently not at the stage where they
can be run faster than real-time so there is still a significant
time cost to be paid for rollouts and evaluations.

Our method is also related to multi-agent reinforcement
learning, and particularly adversarial behaviors from other
agents, considered part of the environment, but whose ac-
tions we can observe and whose strategies we can model.
Examples of methods in this category include minimax Q-
learning [21], the decentralized Partially Observable Markov
Decision Process (POMDP) [22], and more recent multi-
agent reinforcement learning methods, such as [23], [24].

C. Adversarial Optimization

The representational capacity of neural networks has also
brought increased and renewed interest in examining the
conditions under which they generalize as well as a rich body
of work in generating small adversarial perturbations on the
input that drastically change the output. Most of this work
on adversarial examples has focused on fooling classification
networks [25], but recently they have been also applied to
reinforcement learning [26]. Our work goes beyond this, in
that we want to find adversarial policies and trajectories that
will lead the self-driving policy to an unsafe state. Our paper
is most related in purpose, but not in content or methodology,
to [27], which does image synthesis and perturbations to
account for example for weather changes that will make a
CNN driving policy choose the wrong actions. Our paper
is also related in purpose to [28] in that trajectories of
pedestrians and vehicles are modelled in order to produce
typical or atypical traffic behavior.

In addition to this research, there is data efficient im-
itation learning [29] that is inspired by contrastive diver-
gence methods [30] and most notably Generative Adversarial
Networks [31], where a discriminator network separates
examples that have come from the expert as opposed to
having been sampled from a generator network. This method,
however, is not suitable for the exploration of possible
trajectories that is required for our purposes.

D. Differentiable Rendering

The traditional computer graphics pipeline aims to effi-
ciently create a 2D image rendering of a known 3D scene
description, via ray tracing, shading, texture mapping, and
other such methods. While these technologies have reached
the stage where they can very efficiently perform realistic
image synthesis, what they lack is a mapping between inputs
and outputs in a way that correlations between rendering
parameters and the resulting image can be computed ana-
lytically, as opposed to empirically. Although simple differ-
entiable renderers have been proposed, for instance in [32],
they are not yet part of typical game engines.

Differentiable rendering [33], [34] uses neural networks
to model this mapping, thus allowing for inverse rendering,

where we want to find the rendering parameters that lead to
desired properties in the resulting images or match properties
of observed sensor data. Progress in this direction will enable
our work to use model-based reinforcement learning end-
to-end gradient-based optimization through the rendering
process.

III. MODELING ADVERSARIAL BEHAVIORS

Let xt be the state vector of the self-driving vehicle at
time t. This vector includes the 2D position and orientation
of the vehicle in a global reference frame. Let st be the
vector containing the states of the NPCs, both pedestrians
and other vehicles involved in a driving scenario. This vector
involves the 2D positions and orientations s(i)t of all agents
in the simulation, except the self-driving vehicle. Since we
are working with a simulator we know the dynamics model
of the self-driving vehicle state xt+1 ∼ p(x|xt, at) and of
the NPC state st+1 ∼ q(s|st, ut), with at and ut being the
respective controls.

We determine the actions of NPCs by using a parametric
policy ut ∼ πφ(u|st). On the other hand, the self-driving
vehicle’s actions are determined by a policy at ∼ πθ(a|ot),
which is the policy that we want to stress-test. This policy
depends on the observation ot of the vehicle, which in
our work includes only the current image, but can easily
be extended to previous images, LiDAR, radar and other
relevant sensors.

The observation model that characterizes the simulator’s
rendering process from the viewpoint of the self-driving
car is denoted by ot ∼ h(o|xt, st). In our case ot is an
image and the process for generating it, the physics and
rendering engine of UE4, is not differentiable. So, model-
based reinforcement learning approaches are challenging to
apply here. The time evolution of the joint state of the system
is given by the following generative model:

ot ∼ h(o|xt, st) (1)
ut ∼ πφ(u|st) (2)
at ∼ πθ(a|ot) (3)

xt+1 ∼ p(x|xt, at) (4)
st+1 ∼ q(s|st, ut) (5)

The finite-horizon cost-to-go function for our self-driving
simulation scenarios, induced by the two policies and the
observation model mentioned above, is the following:

J(θ, φ) =

T∑
t=0

Ext,st

[
c(xt, st) | x0, s0, πθ, πφ

]
(6)

where c(xt, st) denotes the instantaneous cost which mea-
sures how close the vehicle xt is to crashing with any of the
NPCs in st. Setting this cost function to be an indicator
variable for crashing events gives rise to a very sparse
feedback, which makes optimization harder due to lack of
gradients. Instead, we model it as the closest distance of the
self-driving car xt to any of the NPCs in st, and also include
a penalty term for car collisions in order to encourage crashes

as opposed to sideways contact or side-by-side driving at
close distances. This extra term is not required for collisions
with pedestrians. The final form of the instantaneous cost
function is:

c(xt, st) = min
i
{||xt − s(i)t ||} − λ1[car collision] (7)

Minimizing the cost-to-go function corresponding to this cost
means making the NPCs navigate in such a way that they are
eventually attracted to the changing self-driving car location.
In other words, we are interested in solving the following
optimization problem:

φ∗ = argmin
φ
J(θ, φ) (8)

where the self-driving policy parameters θ are kept fixed
during this optimization process. We integrate the sequence
of NPC behaviors φi obtained by BO and we include the ones
that are deemed the most dangerous according to their cost-
to-go function in the training set of the self-driving policy
πθ. Our system is shown in Alg. 1.

Algorithm 1 Data-Efficient Adversarial Driving Example
Generation for Imitation Learning

1: θ ← θ0 self-driving policy parameters
2: D := {(ot, at)} existing set of driving examples
3: for i=1...K do
4: // φ are the NPC policy parameters
5: Initialize GP model for the cost-to-go J
6: D′ ← {} measurements obtained from simulator
7: for j=1...L do
8: φj = argmax

φ
αEI(φ;D

′)

9: Measure y = Ĵ(θ, φj) from simulator rollouts
10: Update GP model for cost-to-go J
11: D′ ← D′ ∪ {(φj , y)}
12: for (φj , y) ∈ D′ do
13: if y < δ (scenario is dangerous) then
14: o1:N , a1:N ← query expert for

reaction to scenario φj
15: D ← D ∪ {o1:N , a1:N}
16: Retrain driving policy πθ on the updated set D

using supervised learning

IV. BAYESIAN OPTIMIZATION

We model the cost-to-go function using a Gaussian Process
(GP) [35] in order to capture the uncertainty around the
performance of scenarios that we have not evaluated yet,
in order to select informative examples. In particular, we fix
the parameters θ of the driving policy and for notational
convenience we view J solely as a function of φ. We
consider J ∼ GP(0,Kσ,l(φ, φ

′)), where the kernel is Matern
5/2 parameterized by variance σ2 and length scale l, similarly
to [7]. This allows modeling less smooth functions compared
to radial-basis functions kernels. We model observations of
J made through simulator rollouts as:

y = J(φ) + ε, ε ∼ N (0, β2) (9)

where β is the deviation of the measurement noise.
The GP hyperparameters β, l, σ are found by maximizing
the evidence lower bound of the log-marginal likelihood
log p(yi|φi, β, l, σ) of the given data in D′ = {φi, yi}. We
do this using stochastic variational inference [36], as imple-
mented in the deep probabilistic programming framework
pyro1.

We use Bayesian Optimization to find the optimal adver-
sarial scenario φ∗ = argmin

φ
J(φ), but most importantly, due

the sequential nature of the minima discovered, this method
gives us a sequence of adversarial examples that make the
cost-to-go function stay below some threshold.

The mean and variance estimates from the GP is used
to create an acquisition function α(φ) which formalizes the
exploration vs. exploitation tradeoff, and whose optimization
tells us which scenario to evaluate next. We use expected
improvement as the acquisition function:

αEI(φ) = Ep(y|φ,D′)[I(φ)] (10)

where I(φ) = max(J∗ − y, 0) is the improvement function
at the point φ, J∗ is the current best measurement for the
minimum value of the function, and expectation is taken with
respect to the distribution over y given the dataset D′ =
{(φi, yi)}i=1...n of measurements so far. We have analytical
gradients for α(φ) due to the Gaussian assumption of the GP
posterior. The maximal value of the expected improvement
function will correspond to the scenario φ that that will be
evaluated next, given our current set of measurements D′.

Despite its benefits for modeling uncertainty, BO suffers
from scalability issues and the curse of dimensionality: as the
number of input dimensions increases, the required points to
cover the feasible set increases exponentially. Furthermore,
finding the global optimum of α(φ) is significantly more
difficult in higher dimensional settings. There have been
attempts to perform BO in higher dimensions by exploiting
the fact that a large class of problems have a low effective
dimensionality [37], [38], however we do not rely on them
in the current version of this work.

V. HIERARCHICAL POLICY REPRESENTATION

Our key insight for making this optimization process
data-efficient and for avoiding wasteful exploration of NPC
behaviors that do not lead to crashes, is that we impose
a hierarchy on the NPC behavior that makes use of the
map of the simulator. We create a graph based high-level
parametrization of major decision points that have to be made
by NPC agents. Nodes represent the opportunity to make
a low-level policy switch. Edges represent a space interval
where a single low-level policy is executed. This is better
illustrated in Fig. 2.

For NPC cars these decision points are spaced every few
meters on the drivable road and they represent opportuni-
ties for: switching to another lane, making a turn at an
intersection, switching to another speed distribution. For
NPC pedestrians the graph includes nodes that are possible

1http://www.pyro.ai

Fig. 2. (a) The nodes a pedestrian NPC can visit, and their edges, which
enable both normal and jaywalking behavior. (b) The graph that determines
the car NPC decision points.

waypoints on the sidewalk and across intersections, and
edges are established between all possible pairs, thus being
able to model both typical pedestrian behaviors as well as
jaywalking behavior that would normally violate traffic laws.

A. Vehicle Parametrization

The low-level policies of NPC vehicles perform lane-
following on the drivable roads of the map. Roads and
intersections are modeled by a graph. When traversing an
edge e in this graph, the low-level policy is guided by a
target road boundary-following distance de. This parameter
determines which lane the car should drive in, allowing
atypical behaviors, such as turning on the wrong lane, driving
between lanes, or even in the opposite direction of traffic.

If we overload our notation for the NPC policy so as to
represent the behavior of a single NPC vehicle, we will have
πφ(ut|st) =

∑
e∈E πφ(ut|st, de)p(e|st) = πφ(ut|st, det)

because we assume that p(e|st) is 1 only for a single edge,
et. The control vector for vehicles consists of linear velocity,
angular velocity, and the identity of the next edge to be
followed ut = (vt, ωt, et).

Furthermore, at intersections NPC cars can decide whether
they will make a turn or not, and if so, at which lane. At an
n−way intersection the low-level policies will have sufficient
weight parameters corresponding to the number directions in
the intersection.

B. Pedestrian Parametrization

We model our pedestrians in similar fashion to the
vehicles. Given a set of m nodes in the city the path
of an NPC pedestrian is going to be parametrized as
[ni, vi]i∈{1...k} k ≤ m where vi is a speed parameter for
each edge and ni are the index of a node in the graph, relaxed
to a continuous variable that is rounded after optimization.

VI. EVALUATION

We evaluate the quality of the generated adversarial exam-
ples in three ways. First, we compare our Bayesian Optimiza-
tion method against two baselines: random search and the

http://www.pyro.ai

Fig. 3. Collision during scenario #3, in which a pedestrian crosses the
road and prevents the incoming vehicle from completing its turn on time.
The self-driving agent has not seen this scenario before, so its policy does
not act correctly and crashes onto the NPC vehicle.

Cross-Entropy Method, with respect to the minimum cost-
to-go that they achieve over time. We ran our experiments
for 200 function evaluations, across three different types of
scenarios that respectively involve: adversarial human NPCs,
vehicle NPCs, and both. Each experiment was repeated
across three random seeds.

Second, we measure the number of crashes and the mag-
nitude of impact for each of these three methods. Measuring
the impact during a collision is done in CARLA [3] based
on the functionality of Unreal Engine 4. The measurement
consists of the velocity norms of the agents involved at the
exact time a collision event is issued. We found that our BO
method produced crashes with about 1.4 times higher impact
than the other methods, and it also discovered more accidents
on average.

Third, we show qualitative scenarios for our method to
give a sense of the complexity of the scenarios that it can
generate. Finally, as illustrated in Fig. 1, we show that re-
training the policy through imitation learning after including
the generated sequence of adversarial scenarios, leads to a
safer policy than just using typical driving scenarios.

A. Adversarial Pedestrian NPC

In this experiment we setup a scenario with a single
adversarial pedestrian and our self-driving agent, which
traverses a straight road with one intersection in the middle.
The pedestrian is initialized at the intersection, with available
navigation waypoints as shown in Fig. 2. The results of this
scenario are shown in Fig. 4, where BO clearly performs
better than random search and cross-entropy method (CEM),
given the same function evaluation budget. It quickly finds a
crash scenario with pedestrian while the other methods fail

Fig. 4. Minimum cost-to-go per iteration for the case of adversarial
scenarios involving pedestrian NPCs. The Bayesian Optimization approach
identifies a crash scenario almost immediately, while random and the cross-
entropy method (CEM) do not. Note: CEM was terminated after 120
iterations because its parameters converged and its exploration effectively
stopped.

Fig. 5. Minimum cost-to-go per iteration for the case of adversarial
scenarios involving vehicle NPCs. The Bayesian Optimization does better
on average compared to random search, and outperforms the cross-entropy
method.

to do so.

B. Adversarial Vehicle NPC

We setup this experiment with a single adversarial vehicle
and our self-driving agent in the same map as in Fig. 2. The
adversary is initialized on the opposite lane. Furthermore,
we fix all other parameters of the adversarial car, including
color, shape, model etc. Only parameters for the generated
trajectory are varied. In this case too, Bayesian Optimization
does better on average than CEM and random, but its
difference from random is not as significant in this setup,
as shown in Fig. 5.

We think this is because in general the search space for
vehicles in the maps that we have access to (two lanes,
straight road) limit the choice for adversarial behavior, so

even random search ends up being a reasonable choice for
NPC cars. CEM on the other hand seems particularly ill-
suited to this problem because it quickly becomes overcon-
fident in its solution and stops exploring, as shown in both
Fig. 4 and 5.

C. Mixed Pedestrian and Vehicle Adversaries

We also attempt to identify scenarios based on potential
interactions in multi agent settings. We initialize our scenario
with a vehicle and a pedestrian. We fix our road-following
distance parameters for the vehicle, and remove any way-
points that may cause the pedestrian to directly collide with
the vehicle. Our optimization scheme was able to identify
scenarios such as the one in Fig. 3, which causes the self-
driving agent to collide with the other car, and which requires
coordination between the NPC pedestrian and the vehicle.

D. Using Adversarial Scenarios for Imitation Learning

The purpose of generated adversarial scenarios is twofold:
on one hand, we can use them for better testing and identifi-
cation of problematic scenarios. On the other hand, we need
to go beyond that and actually incorporate these scenarios in
the training procedure of the self-driving policy.

As shown in Alg. 1 we currently do this by identifying
dangerous scenarios and then asking an expert, either an
optimal control system or a human, to demonstrate what
the proper reaction is to each adversarial scenario. We
experimented with both types of demonstrations, and in
Fig. I we show the end result of visual imitation learning
trained according to DAgger [5] on one of those scenarios,
where the adversarial vehicle enters the opposite lane, and
drives towards the self-driving vehicle. Without having seen
a scenario like this the vehicle crashes. After having seen it,
it is trained to drive on the empty sidewalk to avoid collision
and minimize risk.

To avoid over fitting to given scenario and the expert’s
commands we also introduce temporally correlated noise
to the expert’s steering as in [39], [40]. We found that
the multiple camera setup as recommended in [41] is not
suitable for obstacle avoidance tasks, because automatically
annotating the commands of the sideways-looking cameras is
challenging. Therefore, we opt for using DAgger [5], where
we can have the expert label states that are far from the
driving model’s training distribution. We found that this lead
to successful retraining.

VII. FUTURE WORK

There are many interesting questions that remain open about
making this work truly useful for self-driving car research,
practical deployment, and testing. First, we need to address
scalability to many pedestrians and many vehicles on a large-
scale map. Second, we need to find probabilistic parameter-
izations of the NPC behaviors that encompass both normal
scenarios and adversarial ones, and still enable efficient
exploration of distinct behaviors. Third, we need to address
the issue of exploration in high-dimensions, which in the last
few years has seen a lot of progress under reinforcement

learning research. Not only are all of these directions of
research exciting, but there are many reasons to be optimistic
given the current rate of progress in related problems.

VIII. CONCLUSION

In this paper we have shown a new connection between
the evaluation of self-driving vehicles and Bayesian Opti-
mization. Our method finds challenging scenarios for self-
driving policies in high-fidelity photorealistic simulators;
scenarios that would be considered rare events on the road,
but nevertheless can cause serious accidents. We propose to
automatically discover these adversarial scenarios by param-
eterizing the behavior of other users of the road, such as other
cars and pedestrians. We do this based on the performance of
a given self-driving policy, without making any assumptions
about its structure being end-to-end trainable or modular and
hand-engineered. We show that when these scenarios are
incorporated in the training set of a driving policy through
imitation learning, they increase its safety.

Automatic exploration and discovery of such challenging
scenarios has the potential to drastically improve the reli-
ability of the self-driving software stack, and surprisingly,
it is a process that still requires human involvement, even
among leading players in the industry. Our results represent
a first step towards using active learning and exploration
approaches to design better tests and to increase the safety
of self-driving vehicles on public roads.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and
Engineering Research Council (NSERC) of Canada for fi-
nancial support.

REFERENCES

[1] A. C. Madrigal, “Inside waymo’s secret world for
training self-driving cars,” The Atlantic, Aug 2017. [Online].
Available: https://www.theatlantic.com/technology/archive/2017/08/
inside-waymos-secret-testing-and-simulation-facilities/537648/

[2] K. Nidhi and S. M. Paddock, “Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle Reliabil-
ity?” https://www.rand.org/pubs/research reports/RR1478.html, 2016,
[Online; accessed 19-July-2018].

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[4] G. Kahn, T. Zhang, S. Levine, and P. Abbeel, “PLATO: policy learning
using adaptive trajectory optimization,” CoRR, vol. abs/1603.00622,
2016.

[5] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
International Conference on Artificial Intelligence and Statistics, AIS-
TATS, 2011, pp. 627–635.

[6] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[7] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in neural
information processing systems, 2012, pp. 2951–2959.

[8] J. Mockus, “Bayesian approach to global optimization and application
to multiobjective and constrained problems,” Journal of Optimization
Theory and Applications, vol. 70, no. 1, pp. 157–172, Jul 1991.

[9] S. Manjanna and G. Dudek, “Data-driven selective sampling for
marine vehicles using multi-scale paths,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver,
Canada, September 2017, pp. 6111–6117.

https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.rand.org/pubs/research_reports/RR1478.html

[10] S. R. Kuindersma, R. A. Grupen, and A. G. Barto, “Variable risk
control via stochastic optimization,” The International Journal of
Robotics Research, vol. 32, no. 7, pp. 806–825, 2013.

[11] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” CoRR, no.
arXiv:1012.2599, December 2010.

[12] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger,
“Information-theoretic regret bounds for gaussian process optimization
in the bandit setting,” IEEE Transactions on Information Theory,
vol. 58, no. 5, pp. 3250–3265, May 2012.

[13] E. Kaufmann, N. Korda, and R. Munos, “Thompson sampling: An
asymptotically optimal finite-time analysis,” in 23rd International
Conference on Algorithmic Learning Theory, ser. ALT’12. Springer-
Verlag, 2012, pp. 199–213.

[14] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” in Advances in Neural Information Processing
Systems 29, 2016, pp. 4026–4034.

[15] K. Azizzadenesheli, E. Brunskill, and A. Anandkumar, “Effi-
cient exploration through bayesian deep q-networks,” CoRR, vol.
abs/1802.04412, 2018.

[16] Z. C. Lipton, J. Gao, L. Li, X. Li, F. Ahmed, and L. Deng, “Efficient
exploration for dialog policy learning with deep BBQ networks,”
CoRR, vol. abs/1608.05081, 2016.

[17] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blun-
dell, and S. Legg, “Noisy networks for exploration,” CoRR, vol.
abs/1706.10295, 2017.

[18] A. Kumar, S. Zilberstein, and M. Toussaint, “Probabilistic inference
techniques for scalable multiagent decision making,” Journal of Arti-
ficial Intelligence Research, vol. 53, no. 1, pp. 223–270, May 2015.

[19] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal
control and reinforcement learning by approximate inference,” in Proc.
of Robotics: Science and Systems (R:SS 2012), 2012.

[20] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” CoRR, vol. abs/1702.08165,
2017.

[21] M. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in International Conference on Machine Learning,
1994, pp. 157–163.

[22] F. A. Oliehoek, Decentralized POMDPs. Springer Berlin Heidelberg,
2012, pp. 471–503.

[23] J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and
I. Mordatch, “Learning with opponent-learning awareness,” in Pro-
ceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2018, pp. 122–130.

[24] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” CoRR, vol. abs/1706.02275, 2017.

[25] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning systems
using adversarial examples,” CoRR, vol. abs/1602.02697, 2016.

[26] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and
P. Abbeel, “Adversarial attacks on neural network policies,” CoRR,
vol. abs/1702.02284, 2017.

[27] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 303–314.

[28] F. M. P. Behbahani, K. Shiarlis, X. Chen, V. Kurin, S. Kasewa,
C. Stirbu, J. Gomes, S. Paul, F. A. Oliehoek, J. V. Messias, and
S. Whiteson, “Learning from demonstration in the wild,” CoRR, vol.
abs/1811.03516, 2018.

[29] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
CoRR, vol. abs/1606.03476, 2016.

[30] M. Á. Carreira-Perpiñán and G. E. Hinton, “On contrastive divergence
learning,” in AISTATS, 2005.

[31] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27, 2014, pp.
2672–2680.

[32] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte
carlo ray tracing through edge sampling,” ACM Trans. Graph. (Proc.
SIGGRAPH Asia), vol. 37, no. 6, pp. 222:1–222:11, 2018.

[33] M. M. Loper and M. J. Black, “Opendr: An approximate differentiable
renderer,” in European Conference on Computer Vision (ECCV), 2014,
pp. 154–169.

[34] J. Wu, E. Lu, P. Kohli, W. T. Freeman, and J. B. Tenenbaum,
“Learning to see physics via visual de-animation,” in Advances in
Neural Information Processing Systems, 2017.

[35] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Advanced lectures on machine learning. Springer, 2004, pp. 63–71.

[36] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational infer-
ence: A review for statisticians,” Journal of the American Statistical
Association, vol. 112, no. 518, pp. 859–877, 2017.

[37] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. De Freitas et al.,
“Bayesian optimization in high dimensions via random embeddings.”
in IJCAI, 2013, pp. 1778–1784.

[38] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton,
“High dimensional bayesian optimization using dropout,” in Interna-
tional Joint Conference on Artificial Intelligence, 2017, pp. 2096–
2102.

[39] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[40] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart:
Noise injection for robust imitation learning,” in Conference on Robot
Learning, vol. 78. PMLR, 13–15 Nov 2017, pp. 143–156.

[41] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
CoRR, vol. abs/1604.07316, 2016.

	INTRODUCTION
	RELATED WORK
	Bayesian Optimization
	Reinforcement Learning and Informed Exploration
	Adversarial Optimization
	Differentiable Rendering

	MODELING ADVERSARIAL BEHAVIORS
	Bayesian Optimization
	Hierarchical Policy Representation
	Vehicle Parametrization
	Pedestrian Parametrization

	EVALUATION
	Adversarial Pedestrian NPC
	Adversarial Vehicle NPC
	Mixed Pedestrian and Vehicle Adversaries
	Using Adversarial Scenarios for Imitation Learning

	FUTURE WORK
	CONCLUSION
	References

